Integrated Systems Approaches to Understand and Predict Cancer Treatment Related Adverse Drug Events

Darrell R. Abernethy, MD, PhD
Associate Director for Drug Safety
Office of Clinical Pharmacology/OTS/CDER/FDA
“The views expressed in this presentation are those of the presenter and do not reflect the official policy of the Food and Drug Administration. No official support or endorsement by the FDA is intended or should be inferred.”
Pharmacological Mechanism-Based Drug Safety Assessment and Prediction

DR Abernethy¹,², J Woodcock¹,² and LJ Lesko¹,²

Advances in cheminformatics, bioinformatics, and pharmacology in the context of biological systems are now at a point that these tools can be applied to mechanism-based drug safety assessment and prediction. The development of such predictive tools at the US Food and Drug Administration (FDA) will complement ongoing efforts in drug safety that are focused on spontaneous adverse event reporting and active surveillance to monitor drug safety. This effort will require the active collaboration of scientists in the pharmaceutical industry, academe, and the National Institutes of Health, as well as those at the FDA to reach its full potential. Here, we describe the approaches and goals for the mechanism-based drug safety assessment and prediction program.

Clinical Pharmacology and Therapeutics 2011;89:793-797.
Systems Pharmacology to Predict Drug Toxicity: Integration Across Levels of Biological Organization*

Jane P.F. Bai and Darrell R. Abernethy

Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993; email: darrell.abernethy@fda.hhs.gov

• Is it possible to identify off-target pharmacological effects of medicines \textit{and} sensitive (or susceptible) patients to predict the probability of serious adverse events in advance?

• Can we construct computational models to generate mechanistic \textit{and} testable biological hypotheses about adverse events – systems pharmacology?

• What types of nonclinical \textit{and} clinical data, information, and analytical tools, are needed to build these models and would such data be shared among stakeholders?
Predicting Adverse Events -1

Goal: Identify potential mechanisms that can used to help decide clinical trial composition and post-marketing surveillance

Needed

Database integrating human interactome and drug target interactions

Identification of neighborhoods in the human interactome associated with adverse events (phenotypes)

Relationships between key nodes in the neighborhoods and cell physiology

Determination of quantitative relationship between drug-target interactions and cellular and tissue phenotypic events (enhanced pharmacodynamic models)

Association of genomic characteristics of susceptible population with enhanced pharmacodynamic models

Outcome: Risk/Benefit ratio for populations stratified on a genomic basis
Predicting Adverse Events -2

Goal: Identify individual susceptibility to adverse events for a drug or a combination of drugs

Needed

General
• Database integrating human interactome and drug target interactions
• Neighborhoods in the human interactome associated with adverse events
• Quantitative relationship between drug-target interaction and clinical phenotype

Specific
• Clinical observations of the individual
• Genomic makeup of the individual

Outcome: Risk/Benefit ratio for the individual patient
Integrating information: challenges

External Information
Content
- Competitor compounds
- Mechanistic information
Amount of information: Huge
“Dilution factor”: High

Internal Information
Content
- Proprietary compounds
- Screening information
- Clinical outcomes etc.
Amount of information: Large
“Dilution factor”: Low

- Different sources
- Different vocabularies
- NO STANDARDS

Integrated views of data
Mechanism-Based Search for Adverse Event Signals

to Compliment

Data-Mining Search for Adverse Event Signals

Goal—To Limit “False-Positive” Signals and Improve Detection of Real Signals
The Challenge

1. How do you make hypotheses about potential toxic events, when these have not yet been observed in the clinic or in models?

2. How can you distinguish between a drug effect, versus an underlying co-morbidity?

3. How can you link classes of drugs or mechanisms to classes of toxicities or to idiosyncratic AEs?

4. How do you go beyond the obvious and explicitly already known?

5. How can this become a standardized workflow?
What are the pieces to be developed?

- Systematic database for molecular toxic targets
- Linkage of molecular toxic targets to organ-level toxicity
- Linkage of molecular toxic targets to MedRA terms
- Linkage of chemical systems biology and biological pathways databases

Examples of the utility of this approach
Moving forward – future direction

- Building an application suite that combines the heterogeneous data to help constructing the computational mechanistic system.

- The application suite to perform the generalizable tasks, not specific only to the TKI-induced cardiotoxicity question

- **Using integrative translation framework and suite of tools**
 - Need communication protocol between layers of information
 - Need multiple modeling tools that analyze data from different aspects (e.g. compound structure, interaction network)
 - Need a framework that accommodates all of above
Mechanism-based TKI Toxicity Prediction

Non QT Tyrosine Kinase Inhibitor Cardiotoxicity
How Specific are Kinase Inhibitors?

A quantitative analysis of kinase inhibitor selectivity
Figure 1 Small molecule–kinase interaction maps for 38 kinase inhibitors. Kinases found to bind are marked with red circles, where larger circles indicate higher-affinity binding. Interactions with $K_d < 3 \mu\text{M}$ are shown. Complete results can be found in Supplementary Table 2 online. The data set is also available through an interactive website (http://www.ambitbio.com/technology/publications). The kinase dendrogram was adapted and is reproduced with permission from Science (http://www.sciencemag.org/) and Cell Signaling Technology, Inc. (http://www.cellsignal.com/).
Needs for an Expanded Ontology-Based Classification of Adverse Drug Reactions and Related Mechanisms

PE Zhichkin¹, BD Athey², MI Avigan³ and DR Abernethy¹

The growing significance of bioinformatics and systems biology in drug safety research requires a system of adverse-event classification that goes beyond a simple vocabulary. This opinion piece outlines the need for development of an ontology-based framework of describing adverse drug reactions (ADRs) and describes the potential applications for such a framework.

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 91 NUMBER 6 | JUNE 2012
Building an ontology that creates the structure for linkage of data across different levels of biological complexity
Protein targets, biochemical pathways and biological processes are dependent on organ and cell types.

- Anatomical structures/organs: UBERON ontology
- Cell types: Cell Ontology (CO)
- Protein targets: Protein Ontology (PRO)
- Biochemical pathways: Gene Ontology (GO)
- Biological processes
- Adverse Effects: MedDRA/SNOMED
The Ontology of Adverse Events

• OAE ‘adverse event’:
 – = def. a OGMS: ‘pathological bodily process’ that occurs after a medical intervention.
 – Does not assume causality
 – ‘causal adverse event’ assumes causality

• >1,000 specific AE terms in OAE now, mapped to MedDRA terms

• http://www.oae-ontology.org/
Why ONTOLOGY…

- Terminology standard
- Computational capability
- Knowledge transfer
- Reusability of concepts
- Knowledge discovery

Integration of knowledge
Connecting ontologies – the two levels of mapping

- MedDRA
- OAE
- OGMS
- Mammalian/Human Phenotype Ontology
- Clinical Phenotype
- Services
- Intermediate Molecular Ontology
- Drug Safety Ontology Unit
- Experimental Genotype
- Ontology import mapping

Mediated association
Knowledge Integration with OAE - example of data infrastructure network from direct import and intermediate mapping.
Data Mining Activities

Work Stream 1. Assessing Preclinical Data

• Examining which kinases/combination of kinases may be involved in cellular signaling networks that could potentially lead to AEs if targeted by TKIs
• Molecular groundwork for modeling in future phases
Data Mining Activities

Work Stream 2. Assessing Clinical Data

• Determine what cardiac effects patients are experiencing
• Determine the incidence and define the severity of those cardiac AEs
• Examine patient variability and generate greater understanding of the propensity and risk factors for cardiotoxicity
• Examine accuracy and precision of existing clinical tests for assessing cardiac health and develop evidence base for best practices
• Clinical groundwork for modeling in future phases
Concept of tranSMART on data level
The Challenge…

- Lack of standardized definition of clinical phenotype
- Lack of robust definition of clinical phenotype of cardiotoxicity
- What terminology?
 - International Classification of Disease 9/10
 - Health Level 7
 - Common Terminology Criteria for Adverse Event
 - Systematized Nomenclature of Medicine Clinical Terms
 - MedDRA
The vision of Drug Safety Data Warehouse (DSDW)
Stages of Adverse Event Progression

Pharmacodynamic Effects

- Molecular Level
- Cell or Tissue Response
- Clinical Endpoints
- Long-Term Clinical Outcome

Adverse Event Processes
OECD-AOP

Chemicals

Macro molecular interactions

Cellular Responses

Organ Responses

Individual Responses

Population Responses

Phenotype Selection

Systems Toxicology Pipeline

Forward Analysis

Compounds to be screened

Backward Analysis

Phenotype

Transcription Factor

Gene Expression

Metabolome
Forward Analysis

Compound → Pathway → Transcription Factors → Phenotype

Phenotype
Phenotype
Phenotype
Phenotype
Backward Analysis

Identification of genes and metabolic state that causes a target phenotype

Transcription Factors

Gene Expression

Metabolome

Phenotype
Moving forward...

- Building ontological infrastructure to lay down this integrative framework is essential.

- Need consensus of definition and measurement thresholds (e.g. grading of symptom, unifying subjective value reading)

- May require standardized protocol in practice, not just standardization of vocabulary
FDA Efforts/Commitment

• Support of Predictive Safety Team and other activities
• BAA, Critical Path, Regulatory Safety Research Funding
• Development of collaborations to advance this program with
 • NCI
 • NCATS
 • NIGMS
 • DARPA
 • Academic Groups
 • PhRMA Companies

Next Steps
• Formation of a Collaborative Group Interested in Sharing Precompetitive Data
• Formation of a Workgroup to Develop Computational Solutions to Solve Problems in these Complex Integrated Biological Systems
Pharmacological Mechanism-Based Drug Safety Assessment and Prediction

- Bridge Disciplines to Foster Collaborative Safety Science

- Bridge Organizations (FDA, NIH, Academe, PhRMA) to Foster Collaborative Safety Science

- Define Areas and Approaches to Integrate Science (Cheminformatics, Bioinformatics, Systems Pharmacology...)

- Define Opportunities for New Science to Fill in the Gaps
Acknowledgements

- FDA
 Issam Zineh
 Janet Woodcock

- NCI
 Lori Minasian

- Reagan-Udall Foundation
- European Bioinformatics Inst.
 Sirarat Sarntivijai

- Mt. Sinai
 Ravi Iyengar

- Harvard
 Peter Sorger

- U. Tokyo/SBI
 Hiroaki Kitano
 Hiroshi Suzuki

- Charity Hospital—Berlin
 Peter Robinson

- UCSF-Stanford CERSI
 Kathy Giacomini
 Russ Altman

- U. Buffalo
 Don Mager

- Duke
 Pam Douglas

- U. Penn
 Bonnie Ky

- U. Michigan
 Brian Athey
 Gil Omenn

- Pharma
 Pfizer, Genentech
Questions?

Thank you