AOPs 101: THE HOW AND WHY OF DEVELOPMENT AND USE

10:00 Welcome
Why are AOPs important, and how can they be useful?
 Catherine Willett, HSUS/HTPC

10:15: The OECD program on AOPs
 Anne Gourmelon, OECD

10:45: Practical experience using the AOP Wiki
 Kristie Sullivan, PCRM

11:00: Introduction to Effectopedia
 Hristo Aladjov, OECD

11:10: Two example AOPs (15 min each)
 • Application of AOP in the Bayesian network ITS framework to assess skin sensitization
 Joanna Jaworska, P&G
 • Constructing AOPs for Developmental Toxicities
 Nicole Kleinstreuer, ILS/NICEATM

11:40: Additional questions and discussion
Why are AOPs important, and how can they be useful?

Catherine Willett, PhD
Director, Regulatory Testing
Risk Assessment and Alternatives
The Humane Society of the United States
kwillett@humanesociety.org

Molecular initiating event → Intermediary steps → Adverse Outcome
Outline

- Why do we need a new approach to toxicology?
- Precedents for pathway-based approaches
- Potential uses
- Requirements for different uses
- AOP projects
The need for a new approach

Pharmaceuticals:
- 92% of drug candidates fail in clinical studies
- “The average drug developed by a major pharmaceutical company costs at least $4 billion, and it can be as much as $11 billion” (Forbes 2012)
- Need to assess novel chemistries (i.e. nanomaterials)

Industrial chemicals:
- Growing concern over lack of data (>10K chemicals worldwide)
- Large-scale regulatory programs: REACH (EU, China, S.Korea)

Pesticides:
- Registration requires the use of approximately 10,000 animals, millions of USD, and many years (decades)
- Need to identify “greener” chemistries

Cosmetics:
- European Cosmetics Directives ban on animal testing
- Consumer concern over safety and animal testing worldwide
The opportunity for a new approach

- Capitalize on advances in chemistry, biology, and engineering (since ~1970)
- Fully utilize all existing knowledge
- Increase assessment capacity ("throughput")
- Increase efficiency (benefit/cost)
- Increase relevance to humans/species of concern
- Increase predictivity

Decrease uncertainty in hazard and risk assessment
Precedents for pathway-based toxicology

1. Dose-response modeling
 • Using pharmacokinetic and mechanistic information

2. IPCS/WHO mode of action frameworks
 • Human relevance of rodent cancer findings
 • Extrapolated to non-cancer endpoints

3. Mode of action pathways in drug and product development
 • Drug and target-specific

 “envisions a new toxicity-testing system that evaluates biologically significant perturbations in key toxicity pathways by using new methods in computational biology and a comprehensive array of in vitro tests based on human biology”
Adverse Outcome “Pathway”

• A chemical and biological description of what occurs when a substance interacts with a living organism and results in an adverse reaction

• A biological map from the molecular initiating event through the resulting adverse outcome that describes both mechanism and mode of action.

Uses of AOPs

Near-term use:
- Inform chemical categories and structure activity relationships
- Prioritization of chemicals for further assessment
- Hazard identification
- Increase certainty of interpretation of both existing and new information
- Develop integrated testing strategies that maximize useful information gained from minimal testing

Longer-term use:
- Identify key events for which non-animal tests can be developed, thereby facilitating mechanism-based, non-animal chemical assessment
- Create predictive toxicological assessments with low uncertainty and high human relevance
- Eventually without the use of animals
Use \propto strength/type of information

Chemical categories
Hazard identification
Prioritization
Integrated strategy design

Molecular initiating event \rightarrow Intermediate event(s) \rightarrow Adverse outcome

Risk assessment
ID key events that link pathways
Predictive system for toxicology
Use \propto strength/type of information

Structure Activity Relationships
Chemical categories

Molecular initiating event \rightarrow Intermediate event(s) \rightarrow Adverse outcome
Use \propto strength/type of information

Hazard identification
Prioritization

Molecular initiating event

Intermediate event(s)

Assay 1

Assay 2

Adverse outcome
Use \propto strength/type of information

Integrated strategy design

Molecular initiating event
- Assay 1

Intermediate event(s)
- Assay 2
- Assay 3

Adverse outcome
- Assay n
Use ∞ strength/type of information

Risk assessment

Molecular initiating event $\xrightarrow{f(MIE)}$ IE 1 $\xrightarrow{f(IE 1)}$ IE 2 $\xrightarrow{f(IE 2)}$ IE... $\xrightarrow{f(IE...)}$ Adverse outcome

Assay 1 \xrightarrow{f} Assay 2 \xrightarrow{f} Assay 3 \xrightarrow{f} Assay... \xrightarrow{f} Assay n
Use \propto strength/type of information

Risk assessment with increased certainty of a particular AO
Predictive toxicology

Pathway A
- Molecular initiating event
- $f(MIE)_A$
- $f(IE_1)_A$
- $f(IE_2)_A$
- $f(IE...)_A$

Pathway B
- Molecular initiating event
- $f(MIE)_B$
- $f(IE_1)_B$
- $f(IE_2)_B$
- $f(IE...)_B$

$Adverse \ outcome$

ETC...
Use \propto strength/type of information

Predictive system for toxicology

Pathway B

- Molecular initiating event
 - $f(MIE)_B$
 - IE 1
 - $f(IE_1)_B$
 - IE...
 - $f(IE_\ldots)_B$
 - Adverse outcome

Pathway A

- Molecular initiating event
 - $f(MIE)_A$
 - IE 1
 - $f(IE_1)_A$
 - IE 2
 - $f(IE_2)_A$
 - IE...
 - $f(IE_\ldots)_A$
 - Adverse outcome

Pathway n

- Molecular initiating event
 - $f(MIE)_n$
 - IE 1n
 - $f(IE_1)_n$
 - IE 2
 - $f(IE_2)_n$
 - IE...
 - $f(IE_\ldots)_n$
 - Adverse outcome

ETC...
AOP Projects

Organization for Economic Cooperation and Development
- Guidance, Template, Handbook, Knowledge-bases (A. Gourmelon)

European Commission/OECD/US EPA
- Knowledge-bases (with EPA and OECD) (K Sullivan)
- Effectopedia (H Aladjov)

Case Studies:
Industry
- Safety assessment, e.g. skin sensitization (J Jaworska)

National Institutes of Health
- Constructing AOPs for Developmental Toxicities (N Kleinstreuer)
Thank You for Attending!

Catherine Willett, PhD
Human Toxicology Project Consortium
Humane Society of the United States
kwillett@humanesociety.org

Kristie Sullivan, MPH
Physicians Committee for Responsible Medicine
ksullivan@pcrm.org