Animal Welfare Perspective on Pathway-based Approaches to Chemical Safety Assessment

Catherine Willett, PhD
Director, Regulatory Testing
Risk Assessment and Alternatives
The Humane Society of the United States
kwillett@humanesociety.org
Outline

• Scientific need for a new approach to chemical assessment
• Animal cost, in terms of numbers, suffering
• Precedents for a pathway-base approach
• Current programs and projects in pathway development
• What’s needed for the future?
• Conclusions
The need for a new approach

Pharmaceuticals:
- 92% of drug candidates fail in clinical studies
- “The average drug developed by a major pharmaceutical company costs at least $4 billion, and it can be as much as $11 billion” (Forbes 2012)
- Need to assess novel chemistries (i.e. nanomaterials)

Industrial chemicals:
- Growing concern over lack of data (>10K chemicals worldwide)
- Large-scale regulatory programs: REACH (EU, China, S.Korea)

Pesticides:
- Registration requires the use of approximately 10,000 animals, millions of USD, and many years (decades)
- Need to identify “greener” chemistries

Cosmetics:
- European Cosmetics Directives ban on animal testing
- Consumer concern over safety and animal testing worldwide
The argument for a new approach

Regulatory cost in animal use: gross approximation*

Annual animal use in research world-wide 115 million/year
15% used for regulatory testing 17 million/year

*Estimates based on:
UK numbers extrapolated to other countries
Few reported numbers
Most countries don’t require reporting
US AWA does not cover
• fish, amphibians, reptiles, birds
• purpose bred mice and rats
• (these are covered by OLAW and AAALAC but not required reporting)

→ Likely underestimated
The argument for a new approach

Animal suffering

Lifetime captivity
- “purpose-bred” mammal maintain instincts
- demonstrate signs of depression
- clinical signs of stress

Toxicological testing
- By definition is “purposeful poisoning”
- MTD required in most guideline studies
- Acute studies can involve high levels of pain
- Lifetime studies → lifetime of suffering

The “3Rs” approach:
- Refinement (better cages, enrichment, lower doses)
- Reduction (fewer numbers)
- Replacement
The argument for a new approach

A pathway-based system for chemical evaluation will:

- Provide support for biological hypothesis-based testing
- Allow development better decision-making tools
- Result in less uncertainty in risk determinations

AND

- toward measuring upstream biological events
 - assessed in cells and reconstructed tissues
- toward computer assisted predictive modeling
- away from animal testing (reduce, replace)

→ Win, Win, Win situation
Precedents for pathway-based toxicology

1. Dose-response modeling
 • Using pharmacokinetic and mechanistic information

2. IPCS/WHO mode of action frameworks
 • Human relevance of rodent cancer findings
 • Extrapolated to non-cancer endpoints

3. Mode of action pathways in drug and product development
 • Drug and target-specific

 “envisions a new toxicity-testing system that evaluates biologically significant perturbations in key toxicity pathways by using new methods in computational biology and a comprehensive array of in vitro tests based on human biology”
Pathway-related projects

US Government

EPA: ToxCast
- High-throughput data generation
- With industry partners
- ~ 800 in vitro assays, thousands of endpoints
- ~300 pathways
- ~3000 chemicals at ~10 concentrations
- All data publically available
- Application to US EDSP: E, A and T pathways

Tox21: NIH/EPA/FDA
- Screening 10,000 chemicals, including drugs
- At the NIH Center for Advancing Translational Science using innovative robotic technology

“Human on a Chip”: DARPA/NIH/FDA
- $132 million over 5 years to universities
- Wyss/Harvard/MIT: lung, liver, intestine
- Goal is 10 organs in 5 years
Pathway-related projects

US Government, cont.

NTP Interagency Center for the Evaluation of Alternative Toxicological Methods
- Endocrine and developmental pathway development
- Assay development and evaluation

EPA: Mid-Atlantic division
- QSARs, AOPs for aquatic toxicity
- Estrogen receptor-mediated reproductive impairment

EPA Office of Research and Development
- Virtual liver
- Virtual embryo

US Army Corps of Engineers
- AOPs for ecotoxicology
- Aromatase inhibition
- Androgen agonism
- HTG axis
- Chemical-specific case studies
Pathway-related projects

The Hamner Institutes

- **“Tier 1 and done”**
 - Complete estrogen receptor pathways
- **PPAR\(\alpha\) network**
 - Systems biology approach to complex network interactions
- **DiliSym:**
 - Computer model for drug-induced liver injury

Johns Hopkins School for Public Health Center for Alternatives to Animal Testing

- **Pathways of Toxicity**
 - “omics” approaches to mapping all pathways
 - Goal of establishing the “Human Toxome”
- **Evidence-based toxicology**
Pathway-related projects

EU: European Commission Joint Research Centre (JRC)

• Safety Evaluation Ultimately Replacing Animal Testing (SEURAT)
 – 25€ million from FP7 and 25 € million from Cosmetics Europe
 – Repeat dose toxicity
 – AOPs for liver toxicity
 – Database
 – Predictive models

• European Union Reference Laboratory for alternatives to animal testing (EURL-ECVAM)
 – Development and assessment of low and high-throughput methods
 – EU-NETVAL (European Union Network of Laboratories for the Validation of Alternative Methods)
 – QSAR Model Database

• JRC/OECD/US EPA
 – AOP knowledgebase
Pathway-related projects

Organization for Economic Cooperation and Development
Advisory Group on Molecular Screening and Toxicogenomics

- Template for building AOPs, organizing information
- Guidance document on developing and assessing AOP (2013), No. 184 Series Testing and Assessment
- AOP-KB:
 - AOPwiki was publically released Sept 25, 2014,
 - Intermediate effects DB, Effectopedia
 - AOPwiki Handbook (in preparation)
- Current workplan: 25 AOPs, 7 case studies

OECD QSAR toolbox
 - Large collection of QSAR and SAR models, databases, guidance
What’s needed for the future?

- A series of prototype pathways
- Quantification of relationships between pathway events
- Assessment systems for querying key events including complex endpoints
- Integration of absorption, metabolism and distribution information
- Quantitative *in vitro-in vivo* extrapolation
- Improved predictive tools
- Integrated databases
- Relational “knowledge bases”
Conclusions

The application of pathway, or system biology approaches to chemical and product safety assessment has many benefits, including:

• Systematic biology-based integration of all types of information
• Hypothesis-based testing and assessment
• Improved understanding, and therefore predictivity, of adverse effects
• Faster, more effective assessment, therefore decreased assessment time and resource commitment

There are a large number of projects in development
And a lot of information needs to be developed

For the systems biology approach to work, a global and cross-sector effort is necessary, is already happening, and momentum is building.
Thank You

Catherine Willett, PhD
Director, Regulatory Testing
Risk Assessment and Alternatives
Humane Society of the United States
AltTox.org

Coordinator, Human Toxicology Project
Consortium
HumanToxicologyProject.org

kwillett@humanesociety.org
Supporting the Science:

Presentations · Workshops · Papers · Sponsorship

Articulating the Vision:

Website · Articles · Videos

Lobbying/Funding:

Bill language · Appropriations · Horizon 2020
The definitive resource for information about non-animal approaches to chemical safety assessment

Methods, Approaches, Programs & Policies • Comprehensive information

New Perspectives • Invited commentaries by leading experts

In the Spotlight • Brief reports on meetings or emerging technologies

Journal Watch • Highlighted new articles

Community Blog • Share your perspective

AltTox Digest • Bi-monthly newsletter